Media
x-voice-match
Analyze a Twitter/X account's posting style and generate
---
name: x-voice-match
description: Analyze a Twitter/X account's posting style and generate authentic posts that match their voice. Use when the user wants to create X posts that sound like them, analyze their posting patterns, or maintain consistent voice across posts. Works with Bird CLI integration.
---
# X Voice Match
Analyze Twitter/X accounts to extract posting patterns and generate authentic content that matches the account owner's unique voice.
## Quick Start
**Step 1: Analyze the account**
```bash
cd /data/workspace/skills/x-voice-match
python3 scripts/analyze_voice.py @username [--tweets 50] [--output profile.json]
```
**Step 2: Generate posts**
```bash
python3 scripts/generate_post.py --profile profile.json --topic "your topic" [--count 3]
```
Or use the all-in-one approach:
```bash
python3 scripts/generate_post.py --account @username --topic "AI agents taking over" --count 5
```
## What It Analyzes
The skill extracts:
- **Length patterns**: Tweet character counts, thread usage, one-liner vs paragraph style
- **Tone markers**: Humor style, sarcasm, self-deprecation, edginess level
- **Topics**: Crypto, AI, tech, memes, personal life, current events
- **Engagement patterns**: QT vs original, reaction tweets, conversation starters
- **Language patterns**: Specific phrases, slang, emoji usage, punctuation style
- **Content types**: Observations, hot takes, memes, threads, questions, personal stories
## Output Format
### Voice Profile (JSON)
```json
{
"account": "@gravyxbt_",
"analyzed_tweets": 50,
"patterns": {
"avg_length": 85,
"length_distribution": {"short": 0.6, "medium": 0.3, "long": 0.1},
"uses_threads": false,
"humor_style": "self-deprecating, ironic",
"topics": ["crypto", "AI agents", "memes", "current events"],
"engagement_type": "reactive QT heavy",
"signature_phrases": ["lmao", "fr", "based"],
"emoji_usage": "minimal, strategic",
"punctuation": "lowercase, casual"
}
}
```
### Generated Posts
Returns 1-N posts with confidence scores and reasoning.
## Integration with Existing Tools
Works with Bird CLI (`/data/workspace/bird.sh`):
```bash
# Fetch fresh tweets for analysis
./bird.sh user-tweets @gravyxbt_ -n 50 > recent_tweets.txt
python3 scripts/analyze_voice.py --input recent_tweets.txt
```
## Post Type Templates
See [references/post-types.md](references/post-types.md) for common X post frameworks:
- Observations
- Hot takes
- Self-deprecating humor
- Crypto commentary
- Reaction posts
- Questions
## Advanced Usage
### Update Voice Profile
Re-analyze periodically to capture style evolution:
```bash
python3 scripts/analyze_voice.py @username --update profile.json
```
### Generate by Post Type
```bash
python3 scripts/generate_post.py --profile profile.json --type "hot-take" --topic "crypto"
```
### Batch Generation
```bash
python3 scripts/generate_post.py --profile profile.json --batch topics.txt --output posts.json
```
## Workflow
1. **First time**: Run full analysis on 30-50 tweets
2. **Generate posts**: Provide topic, get 3-5 style-matched options
3. **User picks**: Select best option or iterate with feedback
4. **Periodic updates**: Re-analyze monthly or after major voice shifts
## Tips
- **Minimum tweets**: 30 tweets for basic analysis, 50+ for accuracy
- **Recency matters**: Recent tweets reflect current style better than old ones
- **Topic relevance**: Generated posts work best on topics the account normally covers
- **Confidence scores**: <70% = may not sound authentic, revise or regenerate
media
By
Comments
Sign in to leave a comment