Web Search
semantic-search-cwicr
Semantic search in DDC CWICR
---
slug: "semantic-search-cwicr"
display_name: "Semantic Search CWICR"
description: "Semantic search in DDC CWICR construction database using vector embeddings. Find similar work items and resources for cost estimation."
---
# Semantic Search in DDC CWICR Database
## Business Case
### Problem Statement
Construction cost estimation requires finding relevant work items from large databases. Traditional keyword search fails when:
- Users describe work in natural language
- Terminology varies across regions and languages
- Similar work items have different naming conventions
### Solution
DDC CWICR database provides pre-computed embeddings (OpenAI text-embedding-3-large, 3072 dimensions) enabling semantic similarity search across 55,719 work items in 9 languages.
### Business Value
- **90% faster** work item lookup compared to manual search
- **Multi-language** support: Arabic, Chinese, German, English, Spanish, French, Hindi, Portuguese, Russian
- **Higher accuracy** by finding semantically similar items, not just keyword matches
## Technical Implementation
### Prerequisites
```bash
pip install qdrant-client openai pandas
```
### Database Setup
```bash
# Download Qdrant snapshot
wget https://github.com/datadrivenconstruction/OpenConstructionEstimate-DDC-CWICR/releases/download/v0.1.0/qdrant_snapshot_en.tar.gz
# Start Qdrant with Docker
docker run -p 6333:6333 -v $(pwd)/qdrant_storage:/qdrant/storage qdrant/qdrant
```
### Python Implementation
```python
import pandas as pd
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams
import openai
class CWICRSemanticSearch:
def __init__(self, qdrant_host: str = "localhost", port: int = 6333):
self.client = QdrantClient(host=qdrant_host, port=port)
self.collection_name = "ddc_cwicr_en"
self.embedding_model = "text-embedding-3-large"
self.embedding_dim = 3072
def get_embedding(self, text: str) -> list:
"""Generate embedding for search query."""
response = openai.embeddings.create(
model=self.embedding_model,
input=text
)
return response.data[0].embedding
def search_work_items(self, query: str, limit: int = 10,
min_score: float = 0.7) -> pd.DataFrame:
"""Search for similar work items."""
query_vector = self.get_embedding(query)
results = self.client.search(
collection_name=self.collection_name,
query_vector=query_vector,
limit=limit,
score_threshold=min_score
)
items = []
for result in results:
item = result.payload
item['similarity_score'] = result.score
items.append(item)
return pd.DataFrame(items)
def search_by_category(self, query: str, category: str,
limit: int = 10) -> pd.DataFrame:
"""Search within specific category."""
query_vector = self.get_embedding(query)
results = self.client.search(
collection_name=self.collection_name,
query_vector=query_vector,
query_filter={
"must": [{"key": "category", "match": {"value": category}}]
},
limit=limit
)
return pd.DataFrame([{**r.payload, 'score': r.score} for r in results])
def estimate_cost(self, work_items: pd.DataFrame,
quantities: dict) -> dict:
"""Calculate cost from matched work items."""
total_cost = 0
breakdown = []
for _, item in work_items.iterrows():
if item['work_item_code'] in quantities:
qty = quantities[item['work_item_code']]
cost = qty * item.get('unit_price', 0)
total_cost += cost
breakdown.append({
'item': item['description'],
'quantity': qty,
'unit_price': item.get('unit_price', 0),
'total': cost
})
return {
'total_cost': total_cost,
'breakdown': breakdown,
'currency': 'Regional default'
}
```
## Usage Examples
### Basic Search
```python
search = CWICRSemanticSearch()
# Natural language query
results = search.search_work_items("brick masonry wall construction")
print(results[['description', 'unit', 'unit_price', 'similarity_score']])
```
### Cost Estimation
```python
# Find work items for foundation work
foundation_items = search.search_work_items(
"reinforced concrete foundation excavation and pouring",
limit=20
)
# Estimate with quantities
quantities = {
'CONC-001': 150, # cubic meters
'EXCV-002': 200, # cubic meters
}
estimate = search.estimate_cost(foundation_items, quantities)
print(f"Estimated Cost: ${estimate['total_cost']:,.2f}")
```
## Database Schema
| Field | Type | Description |
|-------|------|-------------|
| work_item_code | string | Unique identifier |
| description | string | Work item description |
| unit | string | Measurement unit |
| labor_norm | float | Labor hours per unit |
| material_cost | float | Material cost per unit |
| equipment_cost | float | Equipment cost per unit |
| unit_price | float | Total price per unit |
| category | string | Work category |
| embedding | vector[3072] | Pre-computed embedding |
## Best Practices
1. **Use specific queries** - "reinforced concrete slab 200mm" beats "concrete"
2. **Filter by category** - Narrow results to relevant work types
3. **Check similarity scores** - Scores below 0.7 may need manual verification
4. **Combine with QTO** - Use BIM quantities for automated estimation
## Resources
- **GitHub**: [OpenConstructionEstimate-DDC-CWICR](https://github.com/datadrivenconstruction/OpenConstructionEstimate-DDC-CWICR)
- **Releases**: [v0.1.0 Database Downloads](https://github.com/datadrivenconstruction/OpenConstructionEstimate-DDC-CWICR/releases)
- **Qdrant Docs**: https://qdrant.tech/documentation/
web search
By
Comments
Sign in to leave a comment