Automation
self-improvement
Captures learnings, errors, and corrections to enable
---
name: self-improvement
description: "Captures learnings, errors, and corrections to enable continuous improvement. Use when: (1) A command or operation fails unexpectedly, (2) User corrects Claude ('No, that's wrong...', 'Actually...'), (3) User requests a capability that doesn't exist, (4) An external API or tool fails, (5) Claude realizes its knowledge is outdated or incorrect, (6) A better approach is discovered for a recurring task. Also review learnings before major tasks."
---
# Self-Improvement Skill
Log learnings and errors to markdown files for continuous improvement. Coding agents can later process these into fixes, and important learnings get promoted to project memory.
## Quick Reference
| Situation | Action |
|-----------|--------|
| Command/operation fails | Log to `.learnings/ERRORS.md` |
| User corrects you | Log to `.learnings/LEARNINGS.md` with category `correction` |
| User wants missing feature | Log to `.learnings/FEATURE_REQUESTS.md` |
| API/external tool fails | Log to `.learnings/ERRORS.md` with integration details |
| Knowledge was outdated | Log to `.learnings/LEARNINGS.md` with category `knowledge_gap` |
| Found better approach | Log to `.learnings/LEARNINGS.md` with category `best_practice` |
| Similar to existing entry | Link with `**See Also**`, consider priority bump |
| Broadly applicable learning | Promote to `CLAUDE.md`, `AGENTS.md`, and/or `.github/copilot-instructions.md` |
| Workflow improvements | Promote to `AGENTS.md` (OpenClaw workspace) |
| Tool gotchas | Promote to `TOOLS.md` (OpenClaw workspace) |
| Behavioral patterns | Promote to `SOUL.md` (OpenClaw workspace) |
## OpenClaw Setup (Recommended)
OpenClaw is the primary platform for this skill. It uses workspace-based prompt injection with automatic skill loading.
### Installation
**Via ClawdHub (recommended):**
```bash
clawdhub install self-improving-agent
```
**Manual:**
```bash
git clone https://github.com/peterskoett/self-improving-agent.git ~/.openclaw/skills/self-improving-agent
```
### Workspace Structure
OpenClaw injects these files into every session:
```
~/.openclaw/workspace/
├── AGENTS.md # Multi-agent workflows, delegation patterns
├── SOUL.md # Behavioral guidelines, personality, principles
├── TOOLS.md # Tool capabilities, integration gotchas
├── MEMORY.md # Long-term memory (main session only)
├── memory/ # Daily memory files
│ └── YYYY-MM-DD.md
└── .learnings/ # This skill's log files
├── LEARNINGS.md
├── ERRORS.md
└── FEATURE_REQUESTS.md
```
### Create Learning Files
```bash
mkdir -p ~/.openclaw/workspace/.learnings
```
Then create the log files (or copy from `assets/`):
- `LEARNINGS.md` — corrections, knowledge gaps, best practices
- `ERRORS.md` — command failures, exceptions
- `FEATURE_REQUESTS.md` — user-requested capabilities
### Promotion Targets
When learnings prove broadly applicable, promote them to workspace files:
| Learning Type | Promote To | Example |
|---------------|------------|---------|
| Behavioral patterns | `SOUL.md` | "Be concise, avoid disclaimers" |
| Workflow improvements | `AGENTS.md` | "Spawn sub-agents for long tasks" |
| Tool gotchas | `TOOLS.md` | "Git push needs auth configured first" |
### Inter-Session Communication
OpenClaw provides tools to share learnings across sessions:
- **sessions_list** — View active/recent sessions
- **sessions_history** — Read another session's transcript
- **sessions_send** — Send a learning to another session
- **sessions_spawn** — Spawn a sub-agent for background work
### Optional: Enable Hook
For automatic reminders at session start:
```bash
# Copy hook to OpenClaw hooks directory
cp -r hooks/openclaw ~/.openclaw/hooks/self-improvement
# Enable it
openclaw hooks enable self-improvement
```
See `references/openclaw-integration.md` for complete details.
---
## Generic Setup (Other Agents)
For Claude Code, Codex, Copilot, or other agents, create `.learnings/` in your project:
```bash
mkdir -p .learnings
```
Copy templates from `assets/` or create files with headers.
## Logging Format
### Learning Entry
Append to `.learnings/LEARNINGS.md`:
```markdown
## [LRN-YYYYMMDD-XXX] category
**Logged**: ISO-8601 timestamp
**Priority**: low | medium | high | critical
**Status**: pending
**Area**: frontend | backend | infra | tests | docs | config
### Summary
One-line description of what was learned
### Details
Full context: what happened, what was wrong, what's correct
### Suggested Action
Specific fix or improvement to make
### Metadata
- Source: conversation | error | user_feedback
- Related Files: path/to/file.ext
- Tags: tag1, tag2
- See Also: LRN-20250110-001 (if related to existing entry)
---
```
### Error Entry
Append to `.learnings/ERRORS.md`:
```markdown
## [ERR-YYYYMMDD-XXX] skill_or_command_name
**Logged**: ISO-8601 timestamp
**Priority**: high
**Status**: pending
**Area**: frontend | backend | infra | tests | docs | config
### Summary
Brief description of what failed
### Error
```
Actual error message or output
```
### Context
- Command/operation attempted
- Input or parameters used
- Environment details if relevant
### Suggested Fix
If identifiable, what might resolve this
### Metadata
- Reproducible: yes | no | unknown
- Related Files: path/to/file.ext
- See Also: ERR-20250110-001 (if recurring)
---
```
### Feature Request Entry
Append to `.learnings/FEATURE_REQUESTS.md`:
```markdown
## [FEAT-YYYYMMDD-XXX] capability_name
**Logged**: ISO-8601 timestamp
**Priority**: medium
**Status**: pending
**Area**: frontend | backend | infra | tests | docs | config
### Requested Capability
What the user wanted to do
### User Context
Why they needed it, what problem they're solving
### Complexity Estimate
simple | medium | complex
### Suggested Implementation
How this could be built, what it might extend
### Metadata
- Frequency: first_time | recurring
- Related Features: existing_feature_name
---
```
## ID Generation
Format: `TYPE-YYYYMMDD-XXX`
- TYPE: `LRN` (learning), `ERR` (error), `FEAT` (feature)
- YYYYMMDD: Current date
- XXX: Sequential number or random 3 chars (e.g., `001`, `A7B`)
Examples: `LRN-20250115-001`, `ERR-20250115-A3F`, `FEAT-20250115-002`
## Resolving Entries
When an issue is fixed, update the entry:
1. Change `**Status**: pending` → `**Status**: resolved`
2. Add resolution block after Metadata:
```markdown
### Resolution
- **Resolved**: 2025-01-16T09:00:00Z
- **Commit/PR**: abc123 or #42
- **Notes**: Brief description of what was done
```
Other status values:
- `in_progress` - Actively being worked on
- `wont_fix` - Decided not to address (add reason in Resolution notes)
- `promoted` - Elevated to CLAUDE.md, AGENTS.md, or .github/copilot-instructions.md
## Promoting to Project Memory
When a learning is broadly applicable (not a one-off fix), promote it to permanent project memory.
### When to Promote
- Learning applies across multiple files/features
- Knowledge any contributor (human or AI) should know
- Prevents recurring mistakes
- Documents project-specific conventions
### Promotion Targets
| Target | What Belongs There |
|--------|-------------------|
| `CLAUDE.md` | Project facts, conventions, gotchas for all Claude interactions |
| `AGENTS.md` | Agent-specific workflows, tool usage patterns, automation rules |
| `.github/copilot-instructions.md` | Project context and conventions for GitHub Copilot |
| `SOUL.md` | Behavioral guidelines, communication style, principles (OpenClaw workspace) |
| `TOOLS.md` | Tool capabilities, usage patterns, integration gotchas (OpenClaw workspace) |
### How to Promote
1. **Distill** the learning into a concise rule or fact
2. **Add** to appropriate section in target file (create file if needed)
3. **Update** original entry:
- Change `**Status**: pending` → `**Status**: promoted`
- Add `**Promoted**: CLAUDE.md`, `AGENTS.md`, or `.github/copilot-instructions.md`
### Promotion Examples
**Learning** (verbose):
> Project uses pnpm workspaces. Attempted `npm install` but failed.
> Lock file is `pnpm-lock.yaml`. Must use `pnpm install`.
**In CLAUDE.md** (concise):
```markdown
## Build & Dependencies
- Package manager: pnpm (not npm) - use `pnpm install`
```
**Learning** (verbose):
> When modifying API endpoints, must regenerate TypeScript client.
> Forgetting this causes type mismatches at runtime.
**In AGENTS.md** (actionable):
```markdown
## After API Changes
1. Regenerate client: `pnpm run generate:api`
2. Check for type errors: `pnpm tsc --noEmit`
```
## Recurring Pattern Detection
If logging something similar to an existing entry:
1. **Search first**: `grep -r "keyword" .learnings/`
2. **Link entries**: Add `**See Also**: ERR-20250110-001` in Metadata
3. **Bump priority** if issue keeps recurring
4. **Consider systemic fix**: Recurring issues often indicate:
- Missing documentation (→ promote to CLAUDE.md or .github/copilot-instructions.md)
- Missing automation (→ add to AGENTS.md)
- Architectural problem (→ create tech debt ticket)
## Periodic Review
Review `.learnings/` at natural breakpoints:
### When to Review
- Before starting a new major task
- After completing a feature
- When working in an area with past learnings
- Weekly during active development
### Quick Status Check
```bash
# Count pending items
grep -h "Status\*\*: pending" .learnings/*.md | wc -l
# List pending high-priority items
grep -B5 "Priority\*\*: high" .learnings/*.md | grep "^## \["
# Find learnings for a specific area
grep -l "Area\*\*: backend" .learnings/*.md
```
### Review Actions
- Resolve fixed items
- Promote applicable learnings
- Link related entries
- Escalate recurring issues
## Detection Triggers
Automatically log when you notice:
**Corrections** (→ learning with `correction` category):
- "No, that's not right..."
- "Actually, it should be..."
- "You're wrong about..."
- "That's outdated..."
**Feature Requests** (→ feature r
... (truncated)
automation
By
Comments
Sign in to leave a comment