Browser
self-evolving-skill
Meta-cognitive self-learning system - Automated skill
---
name: Self-Evolving Skill
description: Meta-cognitive self-learning system - Automated skill evolution based on predictive coding and value-driven mechanisms.
homepage: https://github.com/whtoo/self-evolving-bot
---
# Self-Evolving Skill
元认知自学习系统 - 基于预测编码和价值驱动的Skill自动演化。
## 功能
- **ResidualPyramid金字塔分解,量化认知缺口
-**: 残差 **自适应反思触发**: 基于残差能量自动判断何时需要学习
- **经验回放**: 缓存已学模式,降低重复触发
- **价值门控**: 只有提升长期价值才接受变异
- **持久化**: 经验自动保存/加载
## 安装
```bash
# 技能已安装到 ~/.openclaw/skills/self-evolving-skill
# 或使用ClawHub
clawhub install self-evolving-skill
```
## 架构
```
self-evolving-skill/
├── core/ # Python核心
│ ├── residual_pyramid.py # 残差金字塔(SVD分解)
│ ├── reflection_trigger.py # 自适应触发器
│ ├── experience_replay.py # 经验回放缓存
│ ├── skill_engine.py # 核心引擎+ValueGate
│ ├── storage.py # 持久化
│ └── mcp_server.py # MCP服务器
├── src/ # TypeScript SDK
│ ├── index.ts # 主入口
│ ├── cli.ts # CLI
│ └── mcp-tools.ts # 工具定义
├── skills/ # OpenClaw Skill
│ └── self-evolving-skill/ # 技能封装
├── MCP_CONFIG.md # MCP配置
└── README.md # 文档
```
## MCP工具
| 工具 | 描述 | 参数 |
|------|------|------|
| `skill_create` | 创建Skill | `name`, `description` |
| `skill_execute` | 执行并学习 | `skill_id`, `context`, `success`, `value` |
| `skill_analyze` | 分析嵌入 | `embedding` |
| `skill_list` | 列出Skills | - |
| `skill_stats` | 系统统计 | - |
| `skill_save` | 持久化保存 | `skill_id` |
| `skill_load` | 加载 | `skill_id` |
## 使用方式
### CLI
```bash
# 列出所有Skill
openclaw skill self-evolving-skill list
# 创建Skill
openclaw skill self-evolving-skill create --name "MySkill"
# 执行
openclaw skill self-evolving-skill execute <id> --success
# 分析
openclaw skill self-evolving-skill analyze --embedding '[0.1,0.2,...]'
# 统计
openclaw skill self-evolving-skill stats
```
### MCP服务器
```bash
# 启动MCP服务器
cd ~/.openclaw/skills/self-evolving-skill
./run_mcp.sh
# 或使用适配器
python3 mcporter_adapter.py skill_list '{}'
```
### 编程
```typescript
import { SelfEvolvingSkillEngine } from 'self-evolving-skill';
const engine = new SelfEvolvingSkillEngine();
await engine.init();
const { skillId } = await engine.createSkill({ name: 'Analyzer' });
const stats = await engine.stats();
```
## 核心算法
### 1. 残差金字塔分解
```python
pyramid = ResidualPyramid(max_layers=5, use_pca=True)
decomposition = pyramid.decompose(embedding)
# 输出:
# - residual_ratio: 残差能量比率
# - suggested_abstraction: POLICY / SUB_SKILL / PREDICATE
# - novelty_score: 综合新颖性
```
### 2. 三层跃迁规则
| 覆盖率 | 抽象层级 | 操作 |
|--------|---------|------|
| >80% | POLICY | 调整策略权重 |
| 40-80% | SUB_SKILL | 生成子Skill |
| <40% | PREDICATE | 归纳新谓词 |
### 3. 自适应阈值
```python
trigger = ReflectionTrigger(
min_energy_ratio=0.10, # 初始阈值
value_gain_threshold=0.20, # 触发阈值
target_trigger_rate=0.15 # 目标15%触发率
)
```
## 文件位置
| 路径 | 说明 |
|------|------|
| `~/.openclaw/skills/self-evolving-skill` | 技能根目录 |
| `~/.openclaw/mcp_servers/self-evolving-skill.json` | MCP服务器配置 |
| `~/.openclaw/workspace/self-evolving-skill/storage` | 数据存储 |
## 相关文档
- [README.md](./README.md) - 完整文档
- [MCP_CONFIG.md](./MCP_CONFIG.md) - MCP配置说明
- [MEMORY.md](../MEMORY.md) - 研究笔记
browser
By
Comments
Sign in to leave a comment