Web Search
qmd-local-search
Fast local search for markdown files, notes, and docs
---
name: qmd
description: Fast local search for markdown files, notes, and docs using qmd CLI. Use instead of `find` for file discovery. Combines BM25 full-text search, vector semantic search, and LLM rerankingβall running locally. Use when searching for files, finding code, locating documentation, or discovering content in indexed collections.
---
# qmd β Fast Local Markdown Search
## When to Use
- **Finding files** β use instead of `find` across large directories (avoids hangs)
- **Searching notes/docs** β semantic or keyword search in indexed collections
- **Code discovery** β find implementations, configs, or patterns
- **Context gathering** β pull relevant snippets before answering questions
## Quick Reference
### Search (most common)
```bash
# Keyword search (BM25)
qmd search "alpaca API" -c projects
# Semantic search (understands meaning)
qmd vsearch "how to implement stop loss"
# Combined search with reranking (best quality)
qmd query "trading rules for breakouts"
# File paths only (fast discovery)
qmd search "config" --files -c kell
# Full document content
qmd search "pattern detection" --full --line-numbers
```
### Collections
```bash
# List collections
qmd collection list
# Add new collection
qmd collection add /path/to/folder --name myproject --mask "*.md,*.py"
# Re-index after changes
qmd update
```
### Get Files
```bash
# Get full file
qmd get myproject/README.md
# Get specific lines
qmd get myproject/config.py:50 -l 30
# Get multiple files by glob
qmd multi-get "*.yaml" -l 50 --max-bytes 10240
```
### Output Formats
- `--files` β paths + scores (for file discovery)
- `--json` β structured with snippets
- `--md` β markdown formatted
- `-n 10` β limit results
## Tips
1. **Always use collections** (`-c name`) to scope searches
2. **Run `qmd update`** after adding new files
3. **Use `qmd embed`** to enable vector search (one-time, takes a few minutes)
4. **Prefer `qmd search --files`** over `find` for large directories
## Models (auto-downloaded)
- Embedding: embeddinggemma-300M
- Reranking: qwen3-reranker-0.6b
- Generation: Qwen3-0.6B
All run locally β no API keys needed.
web search
By
Comments
Sign in to leave a comment