Automation
mcp-registry-manager
Centralized discovery and quality scoring
# MCP Registry Manager π
Centralized discovery and quality scoring for the exploding MCP (Model Context Protocol) ecosystem.
## What It Does
The MCP ecosystem is growing fast β `awesome-mcp-servers`, `AllInOneMCP`, GitHub β but no unified discovery or quality checks.
**MCP Registry Manager** provides:
- **Unified discovery** β Aggregate servers from multiple sources
- **Quality scoring** β Test coverage, documentation, maintenance status
- **Semantic search** β "Find servers for file operations" (not just keyword search)
- **Install management** β Install/uninstall with dependency resolution
- **Categorization** β Organize by domain (files, databases, APIs, dev tools)
## Problem It Solves
MCP is becoming the "USB-C of agent tools" but:
- Discovery is fragmented (GitHub repos, lists, registries)
- No quality signals (which servers are production-ready?)
- No semantic search (can't find "what does this do?")
- No unified management
## Usage
```bash
# Discover all MCP servers
python3 scripts/mcp-registry.py --discover
# Search semantically
python3 scripts/mcp-registry.py --search "file system operations"
# Get quality report for a server
python3 scripts/mcp-registry.py --score @modelcontext/official-filesystem
# Install a server
python3 scripts/mcp-registry.py --install @modelcontext/official-filesystem
# List installed servers
python3 scripts/mcp-registry.py --list
# Update all installed servers
python3 scripts/mcp-registry.py --update
```
## Quality Score Formula
```
Quality = (0.4 * TestCoverage) + (0.3 * Documentation) + (0.2 * Maintenance) + (0.1 * Community)
Where:
- TestCoverage = % of code covered by tests
- Documentation = README completeness, API docs, examples
- Maintenance = Recent commits, responsive issues
- Community = Stars, forks, contributors
```
## Data Sources
| Source | Type | Coverage |
|---------|--------|-----------|
| awesome-mcp-servers | Curated list | Manual discovery |
| GitHub Search | Repos with `mcp-server` topic | Fresh discoveries |
| AllInOneMCP | API registry | Centralized metadata |
| Klavis AI | MCP integrations | Production services |
## Categories
- **Files** β Filesystem, storage, S3
- **Databases** β PostgreSQL, MongoDB, Redis, SQLite
- **APIs** β HTTP, GraphQL, REST
- **Dev Tools** β Git, Docker, CI/CD
- **Media** β Image processing, video, audio
- **Communication** β Email, Slack, Discord
- **Utilities** β Time, crypto, encryption
## Architecture
```
βββββββββββββββββββ
β Discovery β β awesome-mcp, GitHub, AllInOneMCP
ββββββββββ¬βββββββββ
β
βΌ
βββββββββββββββββββ
β Registry DB β β SQLite/PostgreSQL with metadata
ββββββββββ¬βββββββββ
β
βΌ
βββββββββββββββββββ
β Quality Scorer β β Test coverage, docs, maintenance
ββββββββββ¬βββββββββ
β
βΌ
βββββββββββββββββββ
β Semantic Searchβ β Embeddings + vector search
ββββββββββ¬βββββββββ
β
βΌ
βββββββββββββββββββ
β CLI Interface β β Install/uninstall/update
βββββββββββββββββββ
```
## Requirements
- Python 3.9+
- requests (for GitHub API)
- sentence-transformers (for semantic search)
- numpy/pandas (for scoring)
## Installation
```bash
# Clone repo
git clone https://github.com/orosha-ai/mcp-registry-manager
# Install dependencies
pip install requests sentence-transformers numpy pandas
# Run discovery
python3 scripts/mcp-registry.py --discover
```
## Inspiration
- **MCP Server Stack guide** β Essential servers list
- **awesome-mcp-servers** β Community-curated directory
- **AllInOneMCP** β Remote MCP registry
- **Klavis AI** β MCP integration platform
## Local-Only Promise
- Registry metadata is cached locally
- Install operations run locally
- No telemetry or data sent to external services
## Version History
- **v0.1** β MVP: Discovery, quality scoring, semantic search
- Roadmap: GitHub integration, CI tests, auto-updates
automation
By
Comments
Sign in to leave a comment