Automation
context-optimizer
Advanced context management with auto-compaction
---
name: context-optimizer
description: Advanced context management with auto-compaction and dynamic context optimization for DeepSeek's 64k context window. Features intelligent compaction (merging, summarizing, extracting), query-aware relevance scoring, and hierarchical memory system with context archive. Logs optimization events to chat.
homepage: https://github.com/clawdbot/clawdbot
metadata:
clawdbot:
emoji: "🧠"
requires:
bins: []
npm: ["tiktoken", "@xenova/transformers"]
install:
- id: npm
kind: npm
label: Install Context Pruner dependencies
command: "cd ~/.clawdbot/skills/context-pruner && npm install"
---
# Context Pruner
Advanced context management optimized for DeepSeek's 64k context window. Provides intelligent pruning, compression, and token optimization to prevent context overflow while preserving important information.
## Key Features
- **DeepSeek-optimized**: Specifically tuned for 64k context window
- **Adaptive pruning**: Multiple strategies based on context usage
- **Semantic deduplication**: Removes redundant information
- **Priority-aware**: Preserves high-value messages
- **Token-efficient**: Minimizes token overhead
- **Real-time monitoring**: Continuous context health tracking
## Quick Start
### Auto-compaction with dynamic context:
```javascript
import { createContextPruner } from './lib/index.js';
const pruner = createContextPruner({
contextLimit: 64000, // DeepSeek's limit
autoCompact: true, // Enable automatic compaction
dynamicContext: true, // Enable dynamic relevance-based context
strategies: ['semantic', 'temporal', 'extractive', 'adaptive'],
queryAwareCompaction: true, // Compact based on current query relevance
});
await pruner.initialize();
// Process messages with auto-compaction and dynamic context
const processed = await pruner.processMessages(messages, currentQuery);
// Get context health status
const status = pruner.getStatus();
console.log(`Context health: ${status.health}, Relevance scores: ${status.relevanceScores}`);
// Manual compaction when needed
const compacted = await pruner.autoCompact(messages, currentQuery);
```
### Archive Retrieval (Hierarchical Memory):
```javascript
// When something isn't in current context, search archive
const archiveResult = await pruner.retrieveFromArchive('query about previous conversation', {
maxContextTokens: 1000,
minRelevance: 0.4,
});
if (archiveResult.found) {
// Add relevant snippets to current context
const archiveContext = archiveResult.snippets.join('\n\n');
// Use archiveContext in your prompt
console.log(`Found ${archiveResult.sources.length} relevant sources`);
console.log(`Retrieved ${archiveResult.totalTokens} tokens from archive`);
}
```
## Auto-Compaction Strategies
1. **Semantic Compaction**: Merges similar messages instead of removing them
2. **Temporal Compaction**: Summarizes older conversations by time windows
3. **Extractive Compaction**: Extracts key information from verbose messages
4. **Adaptive Compaction**: Chooses best strategy based on message characteristics
5. **Dynamic Context**: Filters messages based on relevance to current query
## Dynamic Context Management
- **Query-aware Relevance**: Scores messages based on similarity to current query
- **Relevance Decay**: Relevance scores decay over time for older conversations
- **Adaptive Filtering**: Automatically filters low-relevance messages
- **Priority Integration**: Combines message priority with semantic relevance
## Hierarchical Memory System
The context archive provides a RAM vs Storage approach:
- **Current Context (RAM)**: Limited (64k tokens), fast access, auto-compacted
- **Archive (Storage)**: Larger (100MB), slower but searchable
- **Smart Retrieval**: When information isn't in current context, efficiently search archive
- **Selective Loading**: Extract only relevant snippets, not entire documents
- **Automatic Storage**: Compacted content automatically stored in archive
## Configuration
```javascript
{
contextLimit: 64000, // DeepSeek's context window
autoCompact: true, // Enable automatic compaction
compactThreshold: 0.75, // Start compacting at 75% usage
aggressiveCompactThreshold: 0.9, // Aggressive compaction at 90%
dynamicContext: true, // Enable dynamic context management
relevanceDecay: 0.95, // Relevance decays 5% per time step
minRelevanceScore: 0.3, // Minimum relevance to keep
queryAwareCompaction: true, // Compact based on current query relevance
strategies: ['semantic', 'temporal', 'extractive', 'adaptive'],
preserveRecent: 10, // Always keep last N messages
preserveSystem: true, // Always keep system messages
minSimilarity: 0.85, // Semantic similarity threshold
// Archive settings
enableArchive: true, // Enable hierarchical memory system
archivePath: './context-archive',
archiveSearchLimit: 10,
archiveMaxSize: 100 * 1024 * 1024, // 100MB
archiveIndexing: true,
// Chat logging
logToChat: true, // Log optimization events to chat
chatLogLevel: 'brief', // 'brief', 'detailed', or 'none'
chatLogFormat: '📊 {action}: {details}', // Format for chat messages
// Performance
batchSize: 5, // Messages to process in batch
maxCompactionRatio: 0.5, // Maximum 50% compaction in one pass
}
```
## Chat Logging
The context optimizer can log events directly to chat:
```javascript
// Example chat log messages:
// 📊 Context optimized: Compacted 15 messages → 8 (47% reduction)
// 📊 Archive search: Found 3 relevant snippets (42% similarity)
// 📊 Dynamic context: Filtered 12 low-relevance messages
// Configure logging:
const pruner = createContextPruner({
logToChat: true,
chatLogLevel: 'brief', // Options: 'brief', 'detailed', 'none'
chatLogFormat: '📊 {action}: {details}',
// Custom log handler (optional)
onLog: (level, message, data) => {
if (level === 'info' && data.action === 'compaction') {
// Send to chat
console.log(`🧠Context optimized: ${message}`);
}
}
});
```
## Integration with Clawdbot
Add to your Clawdbot config:
```yaml
skills:
context-pruner:
enabled: true
config:
contextLimit: 64000
autoPrune: true
```
The pruner will automatically monitor context usage and apply appropriate pruning strategies to stay within DeepSeek's 64k limit.
automation
By
Comments
Sign in to leave a comment