DevOps
chromadb-memory
Long-term memory via ChromaDB with local Ollama
---
name: chromadb-memory
description: Long-term memory via ChromaDB with local Ollama embeddings. Auto-recall injects relevant context every turn. No cloud APIs required β fully self-hosted.
version: 1.0.0
author: matts
homepage: https://github.com/openclaw/openclaw
metadata:
openclaw:
emoji: "π§ "
requires:
bins: ["curl"]
category: "memory"
tags:
- memory
- chromadb
- ollama
- vector-search
- local
- self-hosted
- auto-recall
---
# ChromaDB Memory
Long-term semantic memory backed by ChromaDB and local Ollama embeddings. Zero cloud dependencies.
## What It Does
- **Auto-recall**: Before every agent turn, queries ChromaDB with the user's message and injects relevant context automatically
- **`chromadb_search` tool**: Manual semantic search over your ChromaDB collection
- **100% local**: Ollama (nomic-embed-text) for embeddings, ChromaDB for vector storage
## Prerequisites
1. **ChromaDB** running (Docker recommended):
```bash
docker run -d --name chromadb -p 8100:8000 chromadb/chroma:latest
```
2. **Ollama** with an embedding model:
```bash
ollama pull nomic-embed-text
```
3. **Indexed documents** in ChromaDB. Use any ChromaDB-compatible indexer to populate your collection.
## Install
```bash
# 1. Copy the plugin extension
mkdir -p ~/.openclaw/extensions/chromadb-memory
cp {baseDir}/scripts/index.ts ~/.openclaw/extensions/chromadb-memory/
cp {baseDir}/scripts/openclaw.plugin.json ~/.openclaw/extensions/chromadb-memory/
# 2. Get your collection ID
curl -s http://localhost:8100/api/v2/tenants/default_tenant/databases/default_database/collections | python3 -c "import json,sys; [print(f'{c[\"id\"]} {c[\"name\"]}') for c in json.load(sys.stdin)]"
# 3. Add to your OpenClaw config (~/.openclaw/openclaw.json):
```
```json
{
"plugins": {
"entries": {
"chromadb-memory": {
"enabled": true,
"config": {
"chromaUrl": "http://localhost:8100",
"collectionId": "YOUR_COLLECTION_ID",
"ollamaUrl": "http://localhost:11434",
"embeddingModel": "nomic-embed-text",
"autoRecall": true,
"autoRecallResults": 3,
"minScore": 0.5
}
}
}
}
}
```
```bash
# 4. Restart the gateway
openclaw gateway restart
```
## Config Options
| Option | Default | Description |
|--------|---------|-------------|
| `chromaUrl` | `http://localhost:8100` | ChromaDB server URL |
| `collectionId` | *required* | ChromaDB collection UUID |
| `ollamaUrl` | `http://localhost:11434` | Ollama API URL |
| `embeddingModel` | `nomic-embed-text` | Ollama embedding model |
| `autoRecall` | `true` | Auto-inject relevant memories each turn |
| `autoRecallResults` | `3` | Max auto-recall results per turn |
| `minScore` | `0.5` | Minimum similarity score (0-1) |
## How It Works
1. You send a message
2. Plugin embeds your message via Ollama (nomic-embed-text, 768 dimensions)
3. Queries ChromaDB for nearest neighbors
4. Results above `minScore` are injected into the agent's context as `<chromadb-memories>`
5. Agent responds with relevant long-term context available
## Token Cost
Auto-recall adds ~275 tokens per turn worst case (3 results Γ ~300 chars + wrapper). Against a 200K+ context window, this is negligible.
## Tuning
- **Too noisy?** Raise `minScore` to 0.6 or 0.7
- **Missing context?** Lower `minScore` to 0.4, increase `autoRecallResults` to 5
- **Want manual only?** Set `autoRecall: false`, use `chromadb_search` tool
## Architecture
```
User Message β Ollama (embed) β ChromaDB (query) β Context Injection
β
Agent Response
```
No OpenAI. No cloud. Your memories stay on your hardware.
devops
By
Comments
Sign in to leave a comment