Web Search
anshumanbh-qmd
Search markdown knowledge bases efficiently
---
name: qmd
description: Search markdown knowledge bases efficiently using qmd. Use this when searching Obsidian vaults or markdown collections to find relevant content with minimal token usage.
argument-hint: "<search query> [--collection <name>] [--semantic]"
---
# QMD Search Skill
Search markdown knowledge bases efficiently using qmd, a local indexing tool that uses BM25 + vector embeddings to return only relevant snippets instead of full files.
## Why Use This
- **96% token reduction** - Returns relevant snippets instead of reading entire files
- **Instant results** - Pre-indexed content means fast searches
- **Local & private** - All indexing and search happens locally
- **Hybrid search** - BM25 for keyword matching, vector search for semantic similarity
## Commands
### Search (BM25 keyword matching)
```bash
qmd search "your query" --collection <name>
```
Fast, accurate keyword-based search. Best for specific terms or phrases.
### Vector Search (semantic)
```bash
qmd vsearch "your query" --collection <name>
```
Semantic similarity search. Best for conceptual queries where exact words may vary.
### Hybrid Search (both + reranking)
```bash
qmd hybrid "your query" --collection <name>
```
Combines both approaches with LLM reranking. Most thorough but often overkill.
## How to Use
1. **Check if collection exists**:
```bash
qmd collection list
```
2. **Search the collection**:
```bash
# For specific terms
qmd search "api authentication" --collection notes
# For conceptual queries
qmd vsearch "how to handle errors gracefully" --collection notes
```
3. **Read results**: qmd returns relevant snippets with file paths and context
## Setup (if qmd not installed)
```bash
# Install qmd
bun install -g https://github.com/tobi/qmd
# Add a collection (e.g., Obsidian vault)
qmd collection add ~/path/to/vault --name notes
# Generate embeddings for vector search
qmd embed --collection notes
```
## Invocation Examples
```
/qmd api authentication # BM25 search for "api authentication"
/qmd how to handle errors --semantic # Vector search for conceptual query
/qmd --setup # Guide through initial setup
```
## Best Practices
- Use **BM25 search** (`qmd search`) for specific terms, names, or technical keywords
- Use **vector search** (`qmd vsearch`) when looking for concepts where wording may vary
- Avoid hybrid search unless you need maximum recall - it's slower
- Re-run `qmd embed` after adding significant new content to keep vectors current
## Handling Arguments
- `$ARGUMENTS` contains the full search query
- If `--semantic` flag is present, use `qmd vsearch` instead of `qmd search`
- If `--setup` flag is present, guide user through installation and collection setup
- If `--collection <name>` is specified, use that collection; otherwise default to checking available collections
## Workflow
1. Parse arguments from `$ARGUMENTS`
2. Check if qmd is installed (`which qmd`)
3. If not installed, offer to guide setup
4. If searching:
- List collections if none specified
- Run appropriate search command
- Present results to user with file paths
5. If user wants to read a specific result, use the Read tool on the file path
web search
By
Comments
Sign in to leave a comment